| TABLE                 | III              |
|-----------------------|------------------|
| 4-METHYL-6-ALKYLTETR. | AHYDRO-2-PYRONES |

| B.P.<br>Alkyl (°C./mm.) | -2    |                  | Analyses |        |       |          |       |
|-------------------------|-------|------------------|----------|--------|-------|----------|-------|
|                         | B.P.  |                  | Yield,   | Carbon |       | Hydrogen |       |
|                         |       | $n_{\mathrm{D}}$ | %        | Calcd. | Found | Calcd.   | Found |
| n-Butyl <sup>a</sup>    | 114/4 | 1.4517           |          |        |       |          |       |
| Isobutyl                | 110/5 | 1.4484           | 40       | 70.55  | 70.22 | 10.67    | 10.73 |
| Isoamyl                 | 89/1  | 1.4509           | 26       | 71.69  | 71.66 | 10.94    | 10.76 |
| n-Hexyl                 | 89/1  | 1.4545           | 50       | 72.68  | 72.90 | 11.18    | 11.05 |

<sup>a</sup> See R. H. Wiley and H. G. Ellert, J. Am. Chem. Soc., 79, 2266 (1957).

#### TABLE IV

#### Infrared Absorption Maxima of 4-Methyl-6-alkyl-2-pyrones and Their 3-Bromo and Tetrahydro Derivatives<sup>a</sup>

| 6-Alkyl Group               | C==0<br>Stretching | CC<br>Stretching |       | C—O<br>Stretching Region |       |                | C—H<br>Out of Plane<br>Deformation |
|-----------------------------|--------------------|------------------|-------|--------------------------|-------|----------------|------------------------------------|
| 2-Pyrones:                  |                    |                  |       |                          |       |                |                                    |
| Methyl                      | 1736s              | 1645m            | 1565s | 1227w                    | 1147w | 1130w          | 846m                               |
| n-Butyl                     | 1730s              | 1637m            | 1567s | 1222w                    | 1142w | 1125w          | 846m                               |
| Isobutyl                    | 1736s              | 1639m            | 1562s | 1225w                    | 1145w |                | 842m                               |
| 2'-Methylpropenyl           | 1730s              | 1642m            | 1536s | 1228w                    | 1179w | 1159w          | 840m                               |
| Amyl                        | 1730s              | 1634m            | 1567s | 1218w                    | 1140w | 1124w          | 845w                               |
| Isoamyl                     | 1730s              | 1634m            | 1560s | 1219w                    | 1143w | 1126w          | 846w                               |
| Hexyl                       | 1736s              | 1647m            | 1567s | 1222w                    | 1147w | 1130w          | 847m                               |
| 2′,6′-Dimethyl-<br>heptyl   | 1736s              | 1745m            | 1567s | 1225w                    | 1149w | 11 <b>2</b> 6w | 844m                               |
| 3-Bromo-2-pyrones:          |                    |                  |       |                          |       |                |                                    |
| Methyl                      | 1712s              | 1645m            | 1536w | _                        | 1185m |                | 846m                               |
| n-Butyl                     | 1730s              | 1639m            | 1531w | _                        | 1168w |                |                                    |
| 1′,2′-Ďibromo-<br>2′-methyl | 1724s              | 1631m            | 1531w | _                        | 1186w |                | 836w                               |
| n-Hexyl                     | 1718s              | 1637m            | 1529w |                          | 1165w |                | —                                  |
| Tetrahydro-2-pyrones:       |                    |                  |       |                          |       |                |                                    |
| Methyl                      | 1733s              | _                |       | 1235s                    | 1181m | 1138w          |                                    |
| n-Butyl                     | 1736s              |                  | —     | 1236m                    | 1170w |                |                                    |
| Isobutyl                    | 1739s              |                  |       | 1235s                    | 1168w | 1147w          |                                    |
| Isoamyl                     | 1736s              | —                |       | 1233s                    | 1161w |                | _                                  |
| n-Hexyl                     | 1739s              |                  |       | 1240s                    | 1161w |                |                                    |

<sup>a</sup> In cm.<sup>-1</sup> s, strong; m, medium; w, weak.

Acknowledgment: The authors wish to acknowledge partial support of this research through grants from the National Science Foundation and the United States Public Health Service.

DEPARTMENT OF CHEMISTRY UNIVERSITY OF LOUISVILLE LOUISVILLE, KY.

## Cleavage of Trialkylamines by Chloroformates

J. ALLAN CAMPBELL

### Received March 18, 1957

Girrard and Schild<sup>1</sup> have reported that chloroformates react with pyridine and quinoline to give an alkyl chloride, carbon dioxide, and the free base

(1) W. Girrard and F. Schild, Chemistry & Industry, 1232 (1954).

(Equation 1). It has been found in this laboratory that chloroformates will cleave trialkyl amines in boiling benzene to give the alkyl chloride and a carbamate (Equation 2). Both reactions take place

$$R \longrightarrow C - Cl + C_{\delta}H_{\delta}N \longrightarrow RCl + CO_{2} + C_{\delta}H_{\delta}N \quad (1)$$

$$R' \longrightarrow C - Cl + R_{\delta}N \longrightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \longrightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

$$R' \longrightarrow O - C - Cl + R_{\delta}N \rightarrow O$$

with ethyl chloroformate and triethyl amine since carbon dioxide, ethyl chloride, and ethyl diethylcarbamate were produced. However, stigmasteryl chloroformate and triethyl amine react as in Equation 2 exclusively.

Stigmasteryl chloroformate cleaved both Nethyl and N-methyl piperidine to give stigmasteryl N-piperidinylformate. These reactions are in contrast with the amine cleavages of the Hoffman and Von Braun reactions<sup>2</sup> in which the piperidine ring is opened.

Although some tertiary amines are cleaved by acid chlorides<sup>3</sup> at elevated temperatures<sup>4</sup> or when special favorable intramolecular conformations<sup>5</sup> are possible, triethyl amine was not affected by benzoyl chloride in boiling benzene. The cleavage of trialkyl amines by chloroformates may be a general reaction. However, further work is necessary to establish its limitations.

#### EXPERIMENTAL<sup>6</sup>

Stigmasteryl diethylcarbamate from diethyl amine and stigmasteryl chloroformate. Stigmasteryl chloroformate,<sup>7</sup> 5.0 g. (0.0105 mole) was dissolved in 100 ml. of benzene and 3 ml. of diethylamine was added. After standing a few minutes the mixture was warmed to about 50°, then allowed to stand at room temperature for 3 hr. The reaction mixture was extracted with 0.5N hydrochloric acid solution, and water, dried over magnesium sulfate, filtered, and concentrated to dryness, yield 5.0 g. Part of this material, 3.8 g., was dissolved in methylene chloride and filtered through a short column of Florisil. The solvent was removed from the filtrate and the residue (3.12 g.) was crystallized twice from acetone, yield 2.55 g., m.p. 146-148.5°,  $[\alpha]_D - 38°$  (CHCl<sub>3</sub>). *Anal.* Calcd. for C<sub>84</sub>H<sub>67</sub>NO<sub>2</sub>: C, 79.78; H, 11.23. Found: C, 80.03; H, 11.09.

Stigmasteryl diethylcarbamate from stigmasteryl chloroformate and triethylamine. To a dry solution of 4.0 g. (0.0084 mole) of stigmasteryl chloroformate in 60 ml. of dry benzene was added 4 ml. of triethylamine (dried over CaH<sub>2</sub>). After heating at reflux for 2 hr. the solution was cooled, extracted with water, dilute hydrochloric acid, and again with water, dried over magnesium sulfate, filtered, and concentrated to dryness. The residue, 3.85 g., was chromatographed through Florisil to give 3.45 g. (80% yield), m.p. 133–142° of stigmasteryl diethylcarbamate. One crystallization from acetone gave the pure carbamate identical in all respects to the material described above.

The gas produced from a similar run was collected and identified by its infrared absorption spectrum as ethyl chloride.

Ethyl diethylcarbamate.<sup>8</sup> A solution of 54 g. (0.5 mole) of ethyl chloroformate, 125 g. (1.25 moles) of triethylamine, and 200 ml. of dry benzene was heated at reflux for 24 hr. The gas was collected in a Dry Ice-acetone trap and identified as a mixture of carbon dioxide and ethyl chloride by infrared analysis. The ethyl chloride was purified by passing the vapors through a tube of Ascarite. The reaction solution was washed with water, dilute hydrochloric acid, and again with water, dried over magnesium sulfate, and

(4) O. Hess, Ber., 18, 685 (1885).

(5) R. L. Clarke, A. Mooradian, P. Lucas, and T. J. Slauson, J. Am. Chem. Soc., 71, 2821 (1949); F. F. Blicke and A. J. Zambito, Abst. of 111st American Chemical Society Meeting, p. 3K (1947); J. H. Gardner, N. R. Easton, and J. R. Stevens, J. Am. Chem. Soc., 70, 2906 (1948).

(6) M.p.'s were taken on a Kofler micro melting point hot stage.  $[\alpha]$  p's were determined at 22-26° at concentrations of 1-1.5 g. per 100 ml. in a 2-cm. tube.

(7) J. A. Campbell, D. A. Shepherd, B. A. Johnson, and A. C. Ott., J. Am. Chem. Soc., 79, 1127 (1957).

(8) J. v. Braun, Ber., 36, 2286 (1903).

filtered. The filtrate was distilled at atmospheric pressure until the boiling point reached about 165°. Vacuum was applied and the distillate collected was the ethyl diethylcarbamate  $n_D^{25}$  1.4188. Infrared analysis supports the proposed structure with bands at 1692 cm.<sup>-1</sup>, 1270 cm.<sup>-1</sup>, and 1172 cm.<sup>-1</sup>

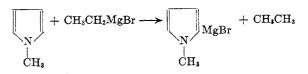
Stigmasteryl piperidinylformate from stigmasteryl chloroformate and N-ethyl piperidine. This product was prepared following the second procedure described for the diethylcarbamate. From 1.0 g. (0.00211 mole) of stigmasteryl chloroformate, 1.0 g. of stigmasteryl N-piperidinylformate, m.p. 125-135° was obtained. It was crystallized from acetone-ethylacetate, then from isopropyl alcohol, yield 0.65 g., m.p. 137-140°,  $[\alpha]_D - 33°$  (CHCl<sub>3</sub>).

Anal. Calcd. for  $C_{36}H_{57}NO_2$ : C, 80.25; H, 10.97; N, 2.67. Found: C, 80.54; H, 10.89; N, 2.69.

From N-methylpiperidine. Following the same procedure 1.0 g. of stigmasteryl chloroformate gave 1.0 g. of crude carbamate, m.p. 134-136°. One recrystallization from isopropyl alcohol gave material, m.p. 136-137°. This product is identical in all respects to the stigmasteryl piperidinylcarbamate prepared as described above.

Acknowledgment. The author is indebted to Drs. D. A. Shepherd and J. C. Babcock for their many suggestions and encouragement, to Dr. J. L. Johnson and Mrs. G. S. Fonken for determination and interpretation of the infrared spectra, and to W. A. Struck and associates for rotations and analyses.

RESEARCH LABORATORIES THE UPJOHN COMPANY KALAMAZOO, MICH.


# Nature of the So-Called Grignard Reagent Formed from N-Methylpyrrole<sup>1</sup>

#### WERNER HERZ

#### Received March 18, 1957

The formation of the pyrrole Grignard reagent from pyrrole and alkylmagnesium halides is wellknown.<sup>2</sup> It might be expected that *N*-alkylpyrroles, having no-NH-group, would be inactive toward alkylmagnesium halides. However, in 1914, Hess and Wissing<sup>3</sup> reported the formation of 2-acyl-1methylpyrroles on treatment of *N*-methylpyrrole with ethylmagnesium bromide and subsequent addition of an acid chloride.

Hess and Wissing<sup>3</sup> assumed originally that *N*methylpyrrole formed a true Grignard reagent, as indicated in equation 1, but following a challenge



<sup>(1)</sup> Supported in part by the Office of Ordnance Research,

- (2) B. Oddo, Gazz. chim. ital., 39, I, 649 (1909).
- (3) K. Hess and F. Wissing, Ber., 47, 1416 (1914).

<sup>(2)</sup> J. Schmidt and H. G. Rule, A Text Book of Organic Chemistry, Revised by N. Campbell, 5th Edition, Gurney and Jackson, London, 1947, p. 703.

Jackson, London, 1947, p. 703. (3) H. Gilman, Organic Chemistry, 2nd Edition, John Wiley and Sons, 1942, p. 1172.

U.S. Army, under Contract No. DA-01-009-ORD-436.